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L. INTRODUCTION

Codes for correcting large multiple random errors are not used
extensively in practical data transmission systems because of equipment
complexity. Threshold decoding is a method of error correction which is
especially suitable for machine implementation because the logical circuit to
realize the threshold decoding is usually very simple.  Finding cyclic codes
that can be decoded by threshold logic becomes important.

Threshold decoding of block codes was introduced by Reed who devised
a decouding . .lie.... {ou the clags of cows discovered by Muller [14] . Massey
devised many threshold deceding algorithms for recurrent codes as well as
block codes.  His book (13] "Threshold decoding” includes a comprehensive
discussion of the work on threshold decoding for block codes before 1963.
Rudolph's [16] threshold decoding algorithm differs from previous algorithms
in that the estimates (parity checks) are not necessarily orthogonal.  His
projective geometry codes are specified in terms of parity check matrices.
The determination of the number of check digits lies on the determination of
the rank of the parity check matrix which is often not easy, especially when
the code length becomes large. It 15 therefore necessary o develop a theory
to described his code in terms of roots of the generator polynomial. The
generator polynomial can then be obtained by multiplying irreducible poly-
nomials found from a mathematical table such as the one from refcrence [14] .
Description of the code in term of the generator polynomial is essential in
simplifving implementation.

Weldon [17] has discoved a clags of cyclic codes based on difference
sets.  Graham and MacWilliams [4 Jhave studied the number of information
digits of difference-set cyclic codes.  The class of difference -set cyciic
codes is a subclass of Rudolph's projective geometry codes. Kasami [6]

has shown that Reed-Muller codes are equivalent to primitive cvcles codes
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with an overall parity check bit added. The cyclic property of these codes
simplifies the decoding algorithm of the Reed-Muller codes and also makes
them more tractable mathematicallv. These codes can now be described
in terms of the roots of the generator polynoinials which suggests a natural
generalization to non-binary cases. = Weldon has investigated non-primitive
Reed-Muller codes [1@ which include as subclasses the primitive Reed-
Muller codes and difference -set codes and has found a decoding algorithm for
them. The non-primitive Reed-Muller code is a subcode of the Rudolph's pro-
jective geometry code, and the decoding algorithm for the non-primitive Reed-
Muller code is applicable to the Rudolph's projective geometry code. In this
thesis, two related classes of cudes derived from Euclidean geometries are
presented. We call them Euclidean geometry codes and modified Euclidean
geometry codes. The generator polynomial of a Euclidean geometry code
is { x - 1) times that of the corresponding modified Euclidean geometry code.
The code symbols of these codes can be chosen from any field containing a
particular prime field GF (p). The dual of a Euclidean geometry cade over
GF (q) is a subcode of a q-ary (q is a power of prime p) modified Reed-Muller
code which contains the parity checks required to make majority vouing. We
derive a class of codes from projective geometries in terms of the roots of
generator polynomials. The discovery of these codes are independent of
Weldon's work on non-primitive Reed-Muller code [18] . These codes are
better than the corresponding non-primitive Reed-Muller cudes in general
because they have more information digits and have the same error -correcting
ability by L -step orthogonalization procedure. Theoretically Rudolph's

projective geometry codes contain the newly established prejective geometry

codes as subcodes.  So far we have not found any case in which they are
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different. The codes from finite geometries including Euclidean geometries
and projective geometries are subcodes of BCH codes of the same length.

Thus these codes are not as efficient as BCH codes .» general. However,

for the most interesting values of code length and rate the difference between
finite geometry codes and BCH codes is slight.  In an attempt to tind a
general threshold decoding algorithm for BCH codes, we found that a class of
BCH codes cannot be L-step orthogonalized. However, all codes (including
some BCH codes) whose extension codes are invariant under a doubly transitive
permutation group can be decoded by one -step threshold decoding. Some of the
BCH codes turned out to be comparable with codes related to finite geometries
by this method.

Recently, coding has been applied to information retrieval. Kautz
and Singleton [9] have proposed using zero-false-dro, codes for information
retrieval.  Chien and Frazer [3] have derived methods for document
retrieval from algebraic coding theory. Two new classes of zero-false -drop
codes have been derived from fimte geometries.  These codes provide more
useful parameters than the previous ones.  Investiganon has been made of
the use of error -correcting codes for information retrieval.  Several
mteresting results have been obtawned.

The material in this paper is arranged as follows.  In chaprer 2.
we present the codes derived from Euclidean geometries.  In chapter 3. the
polynomial version of projective geometry codes 1s given. In chapter 4 we
investigate the threshold decoding of cychic codes, including BCH codes and
finite gecometry codes.  In chapter 5. the apphication of coding theory to in-
formation retricval 1s presented.  Finally we have. in chapter o, the con-

clusion and suggestions for promising areas of future rescarch




II. CODES DERIVED FROM EUCLIDEAN GEOMETRIES

2.1 Preliminaries

Codes derived from Euclidean geometries are closely related to Reed-
Muller codes, we first introduce some background concerning Euclidean
geometries and then indicate the connection beiween Eunclidean geometries and

Reed -Muller codes.

Let a be a primitive element in GF(_qm). As the elements

a 1(i =0, 1...... , m-1) are linearly independent over GF(q), we may write
m-1

al = Z vijal ; 0<j<q™-2 (2.1)
i=0

where VU. is in GF(c).

Let G be 2 matrix defined as

-
0 v(m-l)O V(m -1 v(m -1)(qm -2)
G= . . . . . (2.2)
0 v v . . ¥V,, m
10 11 (g -2)
0 v v « ¢« V., m
i 00 01 ®q™-2)

The first column of G corresponds tn the zero element in GF(qm) and the
jm column ( 2 ij_qm ) corresponds 03”2 in GF(qm).

We can associate each column of the matrix in equation (2. 2) & point
ina Euclidean geometry of m-dimension over GF(q), denoted as EG(m,q) [2].
EG(m,q) consists of qm points 0,1, a, az, ooy a 8 : . An
u-dimensional flat of EG(m, q) consists of qu points a,a@, +a,a +...

ta a + Y where a, (1<i<u)are elements in GF(qm) and are

linearly independent over GF(q). a,. 3, ...., & mayrun independently




over GF(q) and y is a fixed element in GF(q™) [2]. These q" points are
solutions to the m-u linearly independent equations of m unknowns. A
vector associated with an u-dimensional flat is defined to be a vector with
1 (multiplicative identity in GF(q) ) in the positions corresponding to all
points in this flat and 0 (additive identity in GF(q))otherwise.

Kasami et al. [6] has defined a q-ary v-th order modified Reed-
Muller code to be a cyclic code whose generator polynomial contains the
roots a ' for all positive integers h such that the weight of h over base g
or the "digit" sum over the real field of q-ary representation of h is greater

than zero but less than m(q-1) -v. That is, if

m-1
h=z had 5 0<h<q-1
i=0
m-1
then wq(h) = Z hx' . ah is @ root of 2 q-ary modified Reed- 9
i=0

Muller code provided

m-1
G< wq(h) - ; hi < m(g-1) - v (2.3)
i

It has been shown [6) that a q-ary v-th order Reed-Muller code can

be obtained by adding an overall parity check as a first digit 1o every code
word of a q-ary v-th order modified Reed-Muller code. It is well known
[_143 that & binary (m-u)-th order Reed-Muller code contains all vectors
associated with u-dimensional flats. From now on, we shall uge the term
"an u-dimensional flat” instead of “"the vector associated with an u-dimen-

sional flat” when no ambiquity arises. It has been shown (_6] that a q-ary

(m-u) (g-1)-th order Reed-Muller code contains all u-dimensicnal flats of




[S——ry
.

Loy

EG(m, q) passing through the point corresponding to the zero element in

GF(qm). In general, a q-ary (m-u) (q-1)-th order Reed-Muller code
contains all u-dimensional flats of EG(m,q). The proof can be given by an

argument similar to that used in reference [6] .

2.2 Euclidean Geometry Codes

Let q be equal to ps where p is a prime and s is a positve integer.

In this section, we are going to present a cyclic code over GF(p) which has
as parity checks all u-dimensional flats of EG(m, q) with their first digits
deleted.

From the preceding section, q-ary (m-u) (q-1)-th order modified
Reed-Muller code contains all the vectors u obtained by deleting the first
digits of the vectors associated with the u-dimensional flats. From equation
(2. 3) ,the generator polynomial gl(x) of a q-ary (m-u) (q-1)-th order

modified Reed-Muller code contains a h as roots for h satisfying

0< wq(h)( u(g-1) (2.4)

Let vu(x) be the polynomial corresponding to vy

whose coefficients is either 1 or 0 hence v, (X) can be considered as a poly-

vu(x) is a polynomial

nomial over GF(p). Since vu(xp) is equal to (vu(x) )p, vu(x) contains «a hp as
a root if it contains ah as a root.

Let C?) be a code over GF(q) whose generator polynomial gz(x)
containg cxth as roots for h satisfying the condition (2. 4). CS)Q)
is a2 subcode of a q-ary (m-u) (g-1)-th order modificd Reed-Muller Code and

CS;D contains ail u-dimensional flats with their first digits deleted.

e ———




gz(x) is a polynomial over GF(p). ¥ We now show that the cyclic code

C, over GF (p) with gz(x) as its generator polynomial also contains the u-
dimensional flats with their first digits deleted as code words. gz(x) is the
least common multiple of the minimal polynomials mi(x) over GF(p) of the
roots a h for h satisfying the condition (2.4). The polynomial vu(x)
agsociated with an u-dimensional flat is divisible by any such mi(x), hence
vu(x) is divigible by the least common multiple of these mi(x). vu(x) hag its
coefficients in GF(p) and is divisible by gz(x). The code C o contains all
u-dimensional flats with their first digits deleted as code words.

Let C be the dual of the code C o g2(x) contains a hpj a8 roots
for h satisfying the c_ondition (2.4). The reciprocal polynomial gi (x) of

J
gz(x) contains « hp as roots for h satisfying
m(q-1)> w,(h)> (m-u) @-1) (2.9)

The generator polynomial ge(x) of the code C contains all qm-l -th roots of
unity which are not roots of g§(x). a h are roots of ge(x) for any non-

negative integer h less than qm-l and satisfying the condition

0<w, (hp)<(m-u) (@-1) ; 0<j<s-1 (2.6)

Next we show that the lower bound of the minimum distance of the code
Cis

m-u

d=24+q+.... +q 2.7)

This can be achieved by showing that any nonnegative integer h less

m-u

than 1+q+... +q satisfies the condition (2.6). Let

m-1
h-Z hiq’ ; 0<h, <q-1 (2. 8)
j=0
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If hi# 0 for all i suchthat 0<i<m-u, then h>1+q+... +qm—u

Thus for any nonnegative integer h which is less than 1+q+... + q" o,

hi=0 for m-u+1<i< m-1and (2.9)
for at least one i inthe range of 0<i<m-u

For any h satisfying condition (2. 9), one can easily verify that
w q(hpj)f (m-u) (g-1) for all j.  Thus the generator polynomial of the code
C contains 1+q+... + qm-u consecutive roots. The minimum distance
of this code is at least 2+ Q+..... +q %

Since C and Co are dual codes, all code words of C satisfy the parity
checks specified by u-dimensional flats.

We shall call the code C a Euclidean geometry code with parameters

m, u, q. The code exists for any power of prime q(q=ps, where pisa
prime and s is a positive integer), any positive integer m and any integer u fo.

1<u<m-1.

Theorem 2.1: A Buclidean geometry code with parameter m, u, q has code
length qm-l. The number of parity checks of this code is the number of
nonnegative integer h less than qm-l such that the weight of the integers

hpri (0<j<s-1) over base q is no more than (m-u) (q-1). The minimum
distance of this code is at least 2+q+... +q .

The mest important subclass of Euclidean geometry codes is binary
codeg. That is, the case when p equals to 2. We list some binary
Euclidean Geometry codes in Table 2.1. The entries in this table is (n, k,
d) where n ig the code length, k is the number of information digits and d is

the lower bound on minimum distance (d=2+q+.... +qm-u)

.
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Table 2.1 Binary Euclidean Geometry Cyclic Codes

EG(m, q) u=m-1 u=m-2 u=m-3 u=m-4
EG (3,2) | (7,3,4)
EG (4,2) (15, 10, 4) (15,4, 8)

EG (5,2) (31,25,4) (31, 15, 8) (31,5, 16)

EG (6,2) (63, 56, 4) (63,41, 8) (63,21, 16) (63, 6, 32)
EG (2,4) | (15,6,6)

EG (3,4) (63,47,6) (63, 12,22)

EG (4,4) (255, 230, 6) (255, 126, 22) (255, 20, 86)

EG (5,4) (1023, 987, 6) (1023, 747,22) |(1023,287,86) | (1023,32, 342)
EG (2,8) (63, 36, 10)
EG (3,8) (511, 447, 10) (511, 138, 74)
EG (4,8) (4095, 3970, 10) | (4095, 2584, 74) | (4095, 405,586)
EG (2,16) | (255,174, 18)
EG (3,16) | (4095,3839,38) |(4095, 1376, 274)
EG (2,32) | (1023, 780, 34)
EG (2,64) | (4095, 3366, 66)

The first four rows of this Table are codes associated with binazy

Reed-Muller codes and are known.’

of the codes seem to be new.

(15, 6) code iz a BCH code. = The rest
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2.3 Decoding of Euclidean Geometry Codes

In this section, we show that by using u-step orthogenalization pro-
cedure similar to the Reed decoding algorithm we can decode the Euclidean
geometry code C with parameters m, u, q to the bound on the minimun
distance d [18].

The code C satisfies the u-dimensional flat parity checks. In the first
step, we determine u-1-dimensional flat check sums from u-dimensional
flats. Inthe u'-th step ( 1< u' £ u) we determine u-u'-dimensional flat check

sums from u-u'+ 1-dimensional flats.

The following theorem is essential to the implementation of the decoder.

Theorem 2.2: For a given u'-1-dirn.ensional flat ( 1< u' < u), the number of A

u'-dimensional flats containing this u'-l1-dimensional flatis 1+q+.... +

L}
qm v, Any two of these u'-dimensional flats has no points in common

except the points in this u'-1-dimensional flat.

Proof: Consgider a particular u'-1-dimensional flat which consists of qu -1

points a a, +a

1 @t taja iy @ i(lf i <u'-1) are linearly
independent points, a 1<ic<y -1) may run independently over GF(q).
The u'-dimensional flat containing this u'-1-dimensional flat consists of the

v . < i '
points a,a, +n2 2 +au. 19 1+au.<;vu ax“-— i< u') are

linearly independent points. a . rung over all elements in GF(q). The
number of choice of a o' is qm - qu '1. In a fixed u' -dimensional flat,
the number of choice of a is qu - qu *1. The number of distinct

u -dimensional flats containing this u'-1-dimensicnal flat is (qm- qu -1 )/

(qu _qu -1)01’ 1+q+... +q Y The u'-1-dimensional flat and a

point not in thig u'-1-dimensional flat specify a u'-dimensional flat uniquely.

If two u'-dimensional flats have a point outside this u'-1 dimensional flat in

common, they must be identical.
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In general, the u'-1-dimensional flat consists of points of the form
@ ta a,t...tan @, ty where y is a fixed element in
GF(qm). The u'-dimensional flat containing this u'-1-dimensional flat con-
sists of points a,a,+aza,+... +a,, ;@ ., +ta,a . +y. Adding
y to the points in EG(m, q) can be considered as a permutation of points in
EG(m,q). The argument in the preceding paragraph is stll true for th's
u'-1-dimensional flat.  This proves the theorem.

The number 1+q+... +q™ ¥ isnolessthan 1+q+... +q% *

for any u' (1 < u' <u). We can always pick d-1(d=2+q+... + qm-u)
number of u'-dimensional flats orthogonal on a particular u'-1-dimensional
flat to determine a parity check sum corresponding to this u'-1-dimensional
flat. The determination will be correct provided the number of errors
occurred is no more than [(d-l) / 2] . The decoder consists of u levels of
majority logic. In the u-th level, we need a majority gate to determine the
point (O-dimensional flat) corresponding the first digit position of a code

m-u

word. The input to this majority gateisl1+q+ ... +q 1-dimensional

flat parity check sums orthogonal to this point. Weuse 1+q+.... +q" ©
majority gates in the (u - 1)-th level. The decoder is tree-like. In the
j-thlevel (1 < j <u), weuse (1+q+... +qm ™Y uj majority gates to
determine the same number of (u-j)-dimensional flats. The towl number

of majority gates is

u

B!
I= 14q+....+q0 Yy
?—; (1+q q )
J-

The choice of {(u-j)-dimensional flat parity check sums in j-th level
ig not unique.  The construction of the decoder is not unique. Furthermore,

the u’'(1 < u' < u) dimensional flat used in the majority voting may not be
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+ linearly independent. We may not need I number of majority gates if this

is the case. The tree-like decoder is not necessarily the best one. Simplifi -
J cation in circuitry is possible by detail evaluation of the deperdency of the
. parity checks required.
! We now give an example of the binary (15, 6) Euclidean Geometry code
to illustrate the method of obtaining parity checks required for threshold de -
coding.
j Example: Take ¢ = 2%, m=2, andu=1. Let a bea root of primitive

polynomial x4 + x+ 1 over GF(24). a is a primitive element of GF(24).

! All the elements in GF (24) are linear combinations over GF(2) of
I l,a,a 2, a 3 as follows:
* [0 1 a aza3a4a50607a809010aualzal3a14]

[0 0001001101011 1 1]

L

3 2 0001001 101011110
-[_a a ag (2.10)
0 01 011010111100

(o]

o

|01 0 01001101011 1j

Let B = a 5, then 8 is & primitive element of GF(22). We can
consider GF(Z‘)‘as an extension field of GF(ZZ). @ is a primitive element
of GF(24). All elements in GF(Z‘) are linear combinations over GF (22)
of 1, a. Allelements in GF(22) can be written as linear combinations of
1, 8. From equation (2. 10), all elements in GF(24) can be written as

linear combinations of 1, 3, a,a 3 over GF(2) as follows:

]
]
]
1
|
]
|
!
[
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-010020304050607aea9a1oa11a12013014]
(0000100110101 111
001111000100T17101

=Ev@a31] (2. 11)
00011010111 1000 1
0100010071 1010711]1

Since J satisfies the primitive polynomial x2 + x+ 1 over GF(2),

g =B +1 2. 12)

Equadon (2. 11) can be rewritten as

[0 Lo o2 aaa4asaca7asa9a1oaua12013014]

,[01] 00118 1088 180 8% p%p g 2.13)
01088 18 0p2p%apto 1 1 g

It is easy to see from equation (2. 13) that @ is a root of a primitive
polynomial x + x+8 over GF(22).
The generator pclynomial ge(x) of the Euclidean geometry code C

. h ;
contains o as roots for the integers h such that

t

0<wm2)<@-D@-1) ; 0<j<2-1

The integers h satisfy this condition are 0, 1, 2, 4, 8, 3, 6, 9 and
12.

The generator polynomial gz(x} of the dual Co of the code C
contains a h as roots for the h's equalto 1, 2, 4, 8, 5 and 10. The q-ary

(q=4) third order modified Reed-Muller code has generator polynomial gl(x)

comainsah as roots for the h's equal to 1,2,4,8 and 5. The code Cs)q) over
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GF(22) with gz(x) as its generator polynomial is a proper subcode of the
q-ary third order modified Reed-Muller code.
From matrix (2.13), the 1-dimensional flats over GF(2%) of EG(2,2%)

passing through the point « © =1 are as follows.

o o O
o
-
o
(=

(2.14)

o
-
o O o O
o
o o o O
—
—t
(o]
|
<
Q
o

—
<o

o O O

o O o
-

The i-th row (1 < i <5) corresponding to a 1-dimensional flat con-
sists of aa' >+ 1 where a runs over GF(22).

By deleting the first column of matrix (2. 14), we have a set of 5 parity
checks orthogonal to the point a ° These are parity checks for the binary

(15, 6) code.

2.4 Modified Euclidean Geometry Codes

In this section, we define a modified Buclidean geometry code which
has one more information digit than the corresponding Euclidean geometry
code and has a lower bound for minimum distance less than that of the latter
code by one and can be u-step decoded up to this bound.

Let ge(x) be the generator polynomial of the Euclidean geometry code
with parameters m, u, q. We definc the correspending modified Euclidean
geometry code by the code generated by ge(x) /(x-1). Obviously, the lower

bound for the minimum distance of this code is 1+q+.... + qm-u_ q-ary

{m-u) (q-1)-th order Reed-Muller code contains all the vectors associated
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with u-dimensional flats. The generator matrix of G of this Reed-Muller
code would have the property that the vector with all 1 entries is the only
vector with nonzero entry in the first digit. If we delete the all 1 vector
in G, the row space of the new matrix contains all the vectors in the row
space of whose first digit is equal to zero. Let vu'. be a vector obtained
by deleting the first digit of a vector corresponding to an u-dimensional flat
which does not pass through the first point. From this argument, a code
with generator polynomial (x-1) gl(x) contains all the vectors vu' where
gl(x) is the generator polynomial of q-ary (m-u) (q-1)-th order modified
Reed-Muller code.  Thus the modified Euclidean geometry code satisfies
all u-dimensional flat parity checks which do not pass through the deleted
point.  The total number of u'-dimensional flats (1 < u' < u) containing
a particular (u'-1)-dimensional flat which does not pass through the deleted
pointis 1+q+.... + qm-u'. Only one of these u'-dimensional flat con-
tains the deleted point. We can decode this modified Euclidean geometry
code to the distance 1+q+.... + qm e by u-step orthogonalization pro-

cedure.

We can obtain some binary modified Euclidean geometry codes easily

from Table 2.1,

e L

-

el e Ml B

o
%
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1II. CODES DERIVED FROM PROJECTIVE GEOMETRIES

3.1 Introduction

A class of cyclic codes suitable for threshold decoding has been
developed by Rudolph [16]by using the properties of projective geometries.
He first found a majority decoding algorithm which does not require the
parity checks used in majority voting to be orthogonal. = The guaranteed
error correction of a code can be determined easily as the parity check

matrix is an incidence matrix of a balanced incomplete block design which

is also cyclic. However, it is often necessary to compute the rank of the
parity check matrix individually. Weldon L18] defined and developed the non-
primitive Reed-Muller codes in terms of the roots of generator polynomials.
An important subclass of non-primitive Reed-Muller codes are subcodes of
Rudolph's projective geometry codes. Following Weldon's approach, the
generator polynomials of these non-primitive Reed-Muller codes can be found
easily and a more powerful decoding scheme is also applicable.  However,
the Rudolph version of these codes generally possess a larger .iumber of
information digits.

In this chapter, we describe codes derived from projective geometries
in terms of the roots of the generator polynomials.  These codes are better
than Weldon's non-primitive Reed-Muller codes beca ise they have more
infor mation digits in general. These codes are generally subcodes of
Rudolph’s codes.  So far we have not yet found any of the cases that these
codes are not joentical to Rudoiph’s projective geometry codes. A better
code which contains the ncw code as a subcode and which was all required
parity checks is given.  In some special case, this code is identical to the

Ruduiph’s projective geometry code.  The description of the generator poly -

nomial of thus code is somewhat less easy than the previous one.




In an attempt to find the polynomial version of the Rudolph'g code,

we have succeeded, independently of Weldon's work, in constructing the
generator polynomials of a class of cyclic codes. It is shown in section
3.3 that these codes include Weldon's codes as subcodes in general and

they possess a larger number of information digits in a number of cases.

3.2 Rudolph's Projective Geometry Codes

First, let us introduce Rudolph's majority decoding algorithm. Let
A =[aij] , 1=0,1, ...., b-1; denote the parity check matrix of a cyclic
code over GF(p). Suppose the leftmost column of A contains r nonzero
elements, namely, a. ., k=12,..., r. Consider A =[a. .J,

1k0 (o) lk"

k=1,2,..., r asubmatrix of A. A received sequence B= (bo’ bl'
bv—l) is a vector sum of a transmitted code word C= (co, SURERE CV-I)
and an error vector E = (eo. el, ey ev~1)‘ To decode received digit
bo' we first mujiuiply the matrix A0 by the transpose of the received sequence

B and set the product AOBT equal to zero.  The resulting equations are

a b =0 k=12,...,r (3.1)
Z : i
j=0

Treating bo as an unknown and solving

v-1
-1 .
bo“-aio Z ai'bj k=1,2,....r 3.2)
W

Denote the r “estimates” of the first received digit by bo(k).

k=1,2,...,r. One addidonal estimator is the identity bo(o) = bu. Now
set the decoded symbol ,c\o equal to that value of GF(p) assumed hy the

largest fraction of the r + 1 estimates bn(k). For a cyclic code this scheme

‘ for de<oding the first digit also decodes the other v -1 digits.

A
A
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In a balanced incomplete block design, we have v objects arranged
in b blocks. Each block contains k1 distinct objects.  Each object occurs
r times and each pair of objects occurs together in A times. Block design
is conveniently represented by a b by v incidence matrix S =[ sij] where
sij = 1 if i-th block contains j-th element, sij = ( otherwise. Elemently
condidons for the existence of a (v, kl' r,b, A) balanced incomplete block

design are as follows.
1. vr=b k1
2. A (v-1) = r(k, -1) (3.3)

If the parity check matrix A is the incidence matrix S, then the r by v
submatrix will have r I's in its leftmost column and A 1's in all other columns.
This leads to a set of r + 1 estimators (including the identity with each bj
appearing in no more than A equations.  The decoding algorithm is capable
of correcting any combination of e or fewer errors where e =[r/2?\_.).

The brackets denote "integer part of. "

A balanced incomplete block design is called cyclic if every cyclic
permutation of & row of the incidence matrix A is also a row of A. One well-
known class of cyclic designs is associated with projective geometries.

Denote by PG{ml,q) the projective geometry of dimension m, over

1
GF(q). For each u(l <u< ml), one can asscciate a cyclic incidence
matrix A such that the columns correspond to the points and the rows corre -

spond to all possible u-spaces of PG(ml,q). The error -correcting ability

is
e= [r/ZA] - _‘Lu_l.-l_-] @3.4)
2(q- -1)J

The number of check digits however is not known explicitly. A computational

procedure is of course possible by determining the rank of A.
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3.3 A Method for Determining the Generator Polynomials of Projective
Geometry Codes

Rudolph describes his projective geometry codes through the parity
check matrices. In this section a procedure is described for finding the
generator polynomials of a new class of cyclic codes. It is shown that the
code polynomials of the codes generated do satisfy Rudolph's parity check
equations. Hence the new codes are subcodes of the codes specified by
Rudolph.

Let ¢ =p°. Let a be a primitive element of GF(@™). Let n be
(qm-l) / (q-1). As the elements a i(1 <i<<m

» m, =m-1) are linearly

1 1
independent over GF(q), we may write
my
al=z vij al ijiqm-Z 3.5)
i=1

where Vij is in GF(q). Arrange the coefficients in matrix form and define

Pum: -VmIO vmll vt vml(n-l;
Ge |+ | a . .
Y Y10 n o Via-y
Yo | [ Yoo Yo * * Yo(n-1) | (3.6)

We can asgociate each colunu. corresponding to ai ) of this matrix
to a point of PG(ml,q) [1] .

An u-space of PG(ml.q) is defined to be the totality of the points
linearly dependent upon a set of u + 1 linearly independent points. A vector

associated with an u-space is a vector such that its component is equal to 1 if

-]
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the position of this component corresponds to a point contained in this u-space
and the component is equal to 0 otherwise.

We first show that the vectors associated with u-spaces can be
expressed as linear combinations of vectors related to the product of the

u . Let

powers of the vectors Ugr Ugr vees m,

uiuj=(v10' Vipeee vi(n-l) ) (vjo, vjl""’ vj(n-l))
3.7)
0<i,j<€m

=Ci0 Y00 VinYjn o Viga-1) Vi@e1) > 1

where Vik vj g 1sa pr;,)duct of Vik

integer ii, define uii to he u, multiplied by itself li times. Define

and vj K in GF(q). For a positive

o o0 0
up =uy Uy ....um1 =(1,1,..., 1). 3.8)
Let L be a matrix
4 L
£ L m
L o={u®ul..., u ! (3.9)
u 0 1 7" m, :
io tl Eml
whose rows are the vectors u, u, . g m, with £, £, ..., lml
satisfying the condition
™y
z li =c(g-1); 0<c f(ml-u), 0< ti <q-1 (3. 10)
i=0
The u-gpace which contains a ° a 1, cee, @t corresponds to the
vector
m
1 1 q-1 _
T ‘n’ (ui ux) (3. 11)
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This vector is in the row space of Lu' Consider any u-space con-
d d d

taining a ° , a 1, e, Q@ u linearly independent points over GF(q), then

there exists a nonsingular matrix M over GF(q) suck that

d d d
[ao,al,...,au]=M[a°,al,...,au] (3.12)
T T
Let [xml, ceees Xp xo] Ml:uml, eeen Uy uo] . The vector
my
1 l I (xq-1 - u, )correspona.” to the u-space
m, -u i 1 )

(-1) i=u+1

containing do’ dl’ .o«,» d . One can easily verifl that this vector is a
m

u
1 1 e
EERE um1 satisfying the

condition (3.10). Thus we have shown the following.

lineary combination of the vectors uo0 u

Lemma 3.1 Any vector corresponding to an u-gpace is in the row

space of Lu over GF(q).
G, -[1 al o (ah)“‘lJ (3.13)

where h is an integer less than qm -1 and is a multiple of q-1 and the weight
of h over base g is no more than (m1 -u)(q-1).

We want to show that the row space of Gu over GF(q) is identical
to the row space of Lu over GF(q).

let m,

h-z h.q'" : 0<h <q-1 3. 14)
im0

m

my my
h= z h, + Zhi (q‘—x)-wq(h)+ Z hi(qi-l) (3. 15)
i=0 i=0 i=0

ql-l is divisible by q-1. Thus h is divisible by q-1 if and only if wq(h) is

divisible by q-1.




. ———

Any integer h in the matrix Gu satisfies

wq(h) = ¢(q-1) ; 0<c< (ml-u) 3. 16)

We first show that any row vector of Gu is a linear combination of

the rows of Lu' Consider a typical row of matrix (3. 13),

[1 al ----(ah)“‘l] 3.17)

The matrix consists of m rows. Let

my
(ah)i.Zo cijai (3.18)
18

The typical column (a h) } is actually as the following.

Coj (3.19)

to 311 my
over GF(q) of the terms Yo Vi) - vmlj with £, £, ..., lml

satisfying condition (3. 10) and this linear combination is independent of j.

We need only to show that c.j (m1 ‘<Z i < 0)is a linear combination

From equations (3.5) and (3. 14), we haw

(3. 20)

1
b, j < ! 2 h‘qt
oo S, )

i=0




By expanding equation (3.20)

. . t
(11+12+.. .+ 1h)q
a t

1
= H Z vijvij"‘vij
. , 1/ "2 h
0511.12,...,1ht<_m1 T

(3.21)

In the t-th factor of equazt.ion (3.21), each term in the summation has

i as coefficient v. . v. ..... v. . whichisa product of h_of the factors
L i, i 4

t
V. ., Vy,..., V_ . with repetitions permitted. By expanding equation
o) "1j m, j
(3.21)
hy o £(h)
(a1 Zb“ a (3.22)
f
Where {(h) depends only on h but not on j, bf i has the form
5,og m,
bfj.v()j vlj ---- lej (3.23)
and m, m,
Z L - Z hy = w (h) (3.24)
i=G t=0
Let
0< 115 q-1 and ti s i; mod q-1
then [}
L, 4 ™
bfj- vOj vlj “-e- vm‘j (3.25)
with £, 2., ..., Lml satisfying condition (3. 10).




o f(h)

m
a,...,a . Equation (3.22) can be rewritten as

can be expressed as a linear combination over GF(q) of 1,
1

(aj)h= 2 cij al (3. 26)
i=0

where cij is a linear combination over GF(q) of b Thus we have shown

fj
that the row space of Gu over GF(q) is a subspace of the row space of Lu
over GF(q). The dimension of the row space of Gu is equal to the number
of h satisfying condition (3.16). The dimension of the row space of Lu over

GF(q) is no more than the number of rows of Lu' Let the integer h be

corresponding to (20, 11, cen, Zml)if hi = li for 0 < i< m, . The
number of h satisfying condition (3. 10) and the number of (Eo, ‘1’ cees tm )
1
satisfying condition (3. 10) are equal because there exists one to one corre-
spondence between these h's and these (io, il’ cens lm )'s. The
1

dimension of the row space of Gu is no less than the dimension of the row
space of Lu' Hence, we have

Lemma 3.2 The row space of the matrix Gu over GF(qQ) is equal
to the row space of the matrix Lu over GF(q).
Theorem 3.1 Let C be a code with al as a root of its generator poly-
nor .l g(x) if and only if h is divisible by q-1 and satisfies the following

condition.
0< wq(hpj) <(mg-u)@-1); 0<j< sl (3.27)

wq(hpj ) is a digit sum of the q-ary representation of hpj. The null
space of C contains all u-gpaces of PG(ml.q).
Proof: From lemma 3.1 and lemma 3.2, any vector associated with an u-

space is in a code over GF(q) whose generator matrix is equal to Gu' The
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parity check matrix in this code is
H, =[1 ot (a™) “'1] (3.28)
where h' is an integer less than qm-l and satisfying the condition |
q-1 | h' 0< W) < (ut1Xa-D) (3.29)

Let v(x) be a polynomial associated with an u-space. @« b are roots

of v(x) for h' satisfying condition (3.29). v(x) has its coefficients over GF(p).

J
a h is a root of v(x) implies a h'p are roots of v(x).

A code whose generator matrix is

[1 MNP (ah'pj )"'1] (3.30)

with h' satisfying condition (3. 29) satisfies the parity checks agsociated with
all u-spaces of PG(ml.q).
Thus the generator polynomial of this code has a h as its roots for h

satsfying condition (3.27). This theorem is proved.

BCH bound for this code can be seen as follows. Let h=1t{q-1) and

my

i m, -u m, -u-1
h-Z hiq where q-1> hi?_o. For 0 < t <q +q +
i=0
+q. hi equal to Q for m, > i> (ml -u + 1) and not all other hi's equal
to q-1, hence wq (t{g-1))< (ml-u + 1) (q-1). One can easily verify that

w_ (tg-1p) < (m, -u +1) (q-1) for all these U's.  Thus the coa: C defined
q m, -u m1~u-l
in theorem 3. 1 contains q +q +.... + 1 consecutive roots.

Weldon's decoding algorithm for non-primitive Re2d-Muller coces, i.e. u-step

Lo orthogonalization procedure {18] and Rudolph's one step decoding algorithm in

section 3. 2 utilize the fact that the null space of their codes contain all u-spaces

—
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of PG(ml,q). Their algorithms can be applied to this code.  Some possible
improvement of Rudolph's decoding algorithm with be presented in the next

section.  The guaranteed decodable distance by u-step algorithm is

d =2+q+..... +q (3.31)

which is identical to the BCH bound of the code C in theorem 3.1. The

guaranteed decodable distance by one -step algorithm is

m
4@ v/ (q“-n] +1 (3.32)

d is greater than d, in general, but the decoder for one-step decoding
algorithm may be simpler than the decoder for u-step decoding algorithm.

In Table 3.1, we list some binary codes from theorem 3.1. n, k are
the code length, the number of information digits, d and d, are defined in
equations (3. 31) and (3. 32) respectively. The number of information digits
of C is identical to the number of information digits of Rudolph's projective
geometry code listed in reference [16] . Thus theorem 3. 1 establishes the
generator polynomials for all Rudolph's projective geometry codes listed in
Table 3.1. We will see later that some of the codes in Table 3.1 have more

information digits than those of Weldon's non-primitive Reed- Muller codes.




Table 3.1 Binary Cyclic Codes (n, k, d, dl) Associated with PG(ml, 25)

PG(ml.Zs) u=m1-1 u=m1--2 u=m1-3 u=m1~4
PG(2,2) [(7,3,4,4)

PG(3,2) [(15,10,4,3) (15,4, 8,8)

PG(4,” |(31,25,4,3) (31, 15, 8, 6) (31,5, 16, 16)

PG(5,2) |(63,56,4,3) (63, 41,8, 5) (63, 21, 16, 11) (63, 6,32,32)
PG@2,4) |(21,11,6,6)

PG(3,4) [(85,68,6,5) (85, 24,22,22)

PG(4,4) [(341,315,6,5) (341,195, 22, 18) (341, 45, 86, 86)

PG(5,4) [(1365,1328,6,5) }(1365,1063,22,17) |(1365,483,86,69) ](1365,78,342,342)
PG(2,8) (73,45, 10, 10)

PG(3,8) ](585,520,10,9) |(585, 184, 74,74)

PG(4,8) [(4681,4555,10,9) {(4681,3105,74,66) {1681,590,586,586)

PG(2, 16) {(273,191, 18, 18)

PG(3, 16) {(4369,4142,18,17){(4369,1568,274,274)

PG(2,32) (1057, 813, 34, 34)

PG(2,64) |(4161,3431,66,66)

We next show that this code contains Weldon's non-primitive Reed-

Muller code of corresponding parameters as a subcode.

Let h be an integer less than qm-l.

h be

Le

™
hmzhiql ; Of_hifq—l
i=0

t q=p°.

Let p-ary representation of hi be

Let q -ary rupresentation of

(3.33)
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W= ) h. |, 0<j< sl (3.35)

The weight of h over base p is defined as the "digit" sum of the p-

presentation of h, that is

ml s-1 s-1
Wp(h)= z z hi_i = Z Wj (3.36)
i=0 j=0 j=0

The condition for h such that « n is a root of the generator poly-
nomial of the projective geometry code specified in theorem 3. 1 is equivalent

to the following condition

s-1 (S
wq(h)=wo+pwl+ ..... +p Ws_l-(p 1) ko
- - s-
wq(hp) = pW0 + p2W1 + ... + WS_1 (p~-1) k1 (3.37)
w BN = pP W AWt W = (0P k
qhp p o NERREE y s-1 -1
where 0 < kj _<_(ml - u)

From equation (3.37), we have

s-1 s-1
s-1 S
arpt o pH W) =6P ()] K)
=0 =0

then

5-1 s-1
Al
Z WJ. = (p-1) Z k}. < s(ml-u) (p-1) (3.38)
=0 j=0
Only binary case is treated explicitly in Weldon's paper [18] . Let
g(x) be the generator polynomial of the non-primitive Reed-Muller cogde of the

same parameters q = 2%, m, and u as in theorem 3.1. «a h is a reoot of




o
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g(x) if and only if h is an integer less than 2™5_1 such that h is divisible by

2.1 and the weight of h to the base 2 is nc more than s(my- u).

From equation (3. 38), we have shown that the non-primitive Reed-
Muller code is a subcode of the corresponding projective geometry code
defined in theorem 3. 1.

In next, we show that the special case u= m, - 1, Weldon's code is
identical to the code defined in theorem 3.1. For p being any prime and

u=m, - 1, Weldon's non-primitive Reed-Muller code contains roots a h for

h is divisible by q - 1 and

s-1
wib) = > W, <s(p-1) (3.39)
j=0
For nonzero h which is a multiple of ps -1, it is known [18] that wp(h)

is no less than s(p-1). From equation (3. 39),

w (h) = 2 W. = s(p-1) (3. 40)
P = ]
Since m, m, m,
h = Z hq' = Z b, + z hi(q‘-l) (3.41)
i=0 i=0 i=0
m
1
that h is a nonzero integer divisible by q-1 implies that Z h:‘ is also a
i=0
nonzero integer divisible by q-1. Thus
!
W ( Z h)> a(p-1) (3. 42)
i=0
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But m, m,
wp( hi) < Z wp(hi) = wp(h) = s(p-1) (3.43)
i=0 i=0
i Equations (3. 42) and (3. 43) imply that
) ™y ™
. wp( Z hi ) = z wp(hi) (3. 44)
N i= i=0
;1
‘ This implies that
m
s 2
; W= 2, hij<p-l, 0<j<s-l (3.45)
. i=0
!
) From equations (3. 40) and (3. 45)
: W, =p1 ; 0<j<s-l (3. 46)
i For u equals to m, - 1, Weldon's non-primitive Reed -Muller code

contains root a h for nonzero h satisiying condition (3. 46) and for h being

equal to zero.  These h satisfy the condition (3.37). Weldon's code in-

W(
| e

R cludes the code defined in theorem 3. 1 as a subcode for u=mm, -1 case.
:' But the former code is a subcode of the latter code in general. Two codes
} are identical for u = m, - 1 case.
The number of ways to obtain p - 1 as ordered sum of m nonnegative
* integers is (p-lr:_;n-l), hence the total number of h satisfying equation (3. 46)
_ is p;ﬂd)s . The number of check digits for the new code is
.
| i rm1_1-1+(p;f?'2 )s =1+ (p+mn:1-l)s (3.47)
{ This is an upper bound for the number of check digits for Rudolph's

projective geometry code for u being equal to m, - 1.
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For s _ecial case m, = 2, the number of check digits is

- p+1,8
Tm, -1 =1+ (P} (3. 48)

In reference[4], Graham and MacWilliams have shown that the number
of check digits for any difference -set cyclic code which is identical to Rudolph's

projective geometry code for m, equal to two and u equal to one is equal to

r in equation (3.48).  In this case, the non-primitive Reed-Muller code

ml-l

and the code specified in theorem 3. 1 are identical to Rudolph’s projective
geometry code.

The non-primitive Reed-Muller code does not equal to the code defined
in theorem 3. 1 in general. For p equal to two, the non-primitive Reed-

2m

Muller code contains roots a h for integerc h lngg than 5.1 and satisfying

s-1
Z LA M oa v(2%-. ; v isan integer
j=0

s-1
Z Wj < s(m1 - u) (3. 49)
j=0

The condition Yor ¢ k to be the roots of projective geometry code

specified in theorem 3.1 is

3-1
t 8 .\ . } A
Z wtﬂz -k}.(z -1) 0_~§l|:j§(m1 u), 0< j.<s-1  (3.50)
t=0
where Wtﬂ is equal to Wtﬂ. . zg fOr some z such that t+j- 2zs isa non-

negative integer less than s.

For m1_>_5, q:-22 and m, -u=J3; WO-Oand W, =6 ig a solution

i
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to equation (3. 49) but not a solution to equation (3.50). In these
cases, the non-primitive Reed-Muller codes are proper subcodes of pro-
jective geometry codes. It is easy to verify that if a non-primitive Reed-
Muller code is a proper subcode of the projective geometry code for m, = m',
q= 2%, m

LU= £ then the former is also a proper subcode of the latter

for m, =m'+i, q= Zs'm -u= £+ i for any positive integer i.

1 1

In Table 3.2, we list the paramet rs s, £, and m, of which the non-
primitive Reed-Muller codes are proper subcodes of projective geometry
codes specified in theorem 3.1.  In the remark column, we give the reason
for the former codes being oroper subcodes, that is, the Wi's which satisfy
the condition (3. 49) but not (3.50). Some numerical examples are listed

in table 3. 3.

Table 3.2 Cases of Which Binary Non-primitive Reed-Muller Codes are
Proper Subcodes of Projective Geometry Codes

s lﬂml-u m, Remark (i is any positive integer)

2 3 +i >S54 i W =i, W, =6+1i
- ) 1

3 2 +3 >4 44 W =1+i, W, =i, W,=5+i
el o 1 2

3 I+i Z4+i woni, wlu4+i. W2-5+i

4 2+ >5+1i W =2+i, W, =1+, W=4+i, W, =5+i
- o 1 2 3




Table 3.3

Numerical examples of codes in Table 3.2

8 £ m (n, k) {n, k)

2 3 5 (1365, 481) (1365, 483)*

2 3 6 (5461, 3143) (5461, 3185)
2 4 6 (5461, 742) (5461, 1036)
2 3 7 (21845, 17532) (21845, 17588)
2 4 7 (21845, 9048) (21845, 9096)
3 2 4 (4681, 3090) (4681, 3105)*
3 3 4 (4681, 575) (4681, 590)*
4 2 3 (4369, 1505) (4369, 1568)*
4 2 4 (69905, 50779) (69905, 52079)
4 3 4 (69905, 4979) (69905, 5579)

kl is the number of information digits of non-primitive Reed-Muller
code. k2 is that of projective geometry code.

A code containing the code of theorem 3. 1 as a subcode and also
satisfying the parity checks associated with u-dimensional spaces will be
presented. We prove that in some special cages, this code is identical to
Rudolph's projective geometry code.

From equations (3.37) and equation (3. 46), the code Cm -1 specified

1
in theorem 3. 1 for u equal to m, - 1 has its generator polynomial containing

ah as roots if and only if

* indicates this projective geometry code appears in Table 3. 1.
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h=0 (3.51)

or h satisfying the condition
wq(hp’)=q-1 ; 0< j<s-l (3.52)
Let Cu be a code whose generator polynomial consists of roots a h
(i)
which is 2 product of the roots «a h (1<i< m, - u) of the generator
o)

polynomial of Cm q @ are not necessarily distinct.
1

h = ) 3.53)

From equations (3.51), (3.52) and (3. 53)

m,-u m, -u

1 1
whe)=w (20 08 D v wem @ @5

i=1 i=1

h(i) are multiples of q-1, then h is a multiple of q-1. From equation (3. 54),

wq(hpj)= vi@l; 02 §<s1, 0<vi<(miu)(q-])  (3.55)

Hence the code Cu contains the code specified in theorem 3.1 as a
subcode. We want to show that Cu has all u-dimensional flats as parity

checks.  Furtt riore Cu is identical to a Rudolph's projective geometry

code when C  ; isequaltoa Rudolph’s projective geometry code.

1
The generator matrix of the dual code of Cm . 18
1
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for h equal to zero or h satisfying

Wj=p-1 ; 0<j<s-1 3.57)

where Wj is defined in equation (3. 35).

Let ( Eo, ll, ceeny Eml ) be corresponding to h if

£ =h, |, 0<i<m

=h <ig<m (3.58)

Then the row space of G _, canbe shown to be identical to the
1

row space of

b b,
L oyo=| oy, %y s o (3.59)
1 1
with (Eo, il, ..... ,Em ) corresponding to the h equal to zero or h
1
satisfying equation (3.57) as follows. m,

s-1
m Z Zh ts+k
1
hei . . .
(aty) =(aj)h=( z; Vijal = k=0
i=

m
k . ts+k h

m -
(ah)"ﬁ’ "sﬂl'( z vijp Py K (3. 61)

=0 k=0 i=0

(3.60)

The rest of the proof can be accomplished by analogy of the proof of
lemma 3. 2.
Let L\'] be a matrix whose row vectors are the vector product of
the row vectors of L taking m, -uata tume.
ml-l 1
The parity check matrix of Cu can be written of the form in equation

(3.56) for h satisfying equation (3. 53). Similar argument as u equal to

m, -1 case, the matrix Ll'1 is also a parity clieck matrix of Cu.
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Since any (ml- 1) -space of PG(ml,q) is in the row space of Lm -1
i

Any u-space can be considered as an intersection of some m, - u number of

1
(ml- 1)-spaces, hence it must be in the row space of L{l. In case that the
vectors associated with (m1~ 1)-space of PG(ml, q) span the row space of
Lil, the vectors associated with u-spaces of PG(ml,q) als  ,an the row
space of Ll'!

Thus the code Cu has all u-spaces of PG(ml,q) as its parity checks.

Cu is equal to Rudolph's projective geometry code provided Cm -1
1

is equal

to Rudolph's projective geometry code.

3.4 On Rudolph's Decoding Algorithm for Projective Geometry Codes

Rudolph's Decoding Algorithm uses all u-spaces of PG(ml,q) for
majority voting. In this section, we show by an example that it is possible
to choose a set of u-spaces which are orthogonal on a point for majority
voting and achieve the same guaranteed decodable distance by Rudolph's
method in some cases.

Example. For m, = 4, q =2, u=2, we have binary (31, 15) code.
The Rudolph decoding algorithm requires all 105 2-spaces to be used for
majority voting and achieve a guaranteed decodable distance 6.

Let a be a root of primitive polynomial xS + x2 + 1 over GF(2),

then the matrix G in equation (3. 6) becomes

/ 0000100101100111110001101110101
000100101100111110001101110101¢C
0010010110011111000110111010100
0100001001011001111100011011101
1000010010110011111000110111010 (3.62)




We can choose the following five 2-spaces orthogonal to the first
point:
1110010000010000001100000000000
1001100000100000000001000100010
1000001100000001000000101001000

1000000011€00000100010000010100
1000000000001110010000010000001 (3.63)

The guazanteed decodable distance by using this set of orthogonal
parity checks is also 6.

It isimpossible to choose sufficient number of u-spaces which are
orthogonal on a point for majority voting and achieve the same guaranteed
distance by Rudolph's method in general. For example, any two (m1 -1)-
spaces of PG(ml,q) intersect a (m1 - 2)-space. We cannot get a set of two
or more parity checks orthogonal on a point for m, > 2.  The guaranteed
decodable distance by Rudolph's method is

m

1
-1 - q-1 -
[—q?n‘l‘-‘i—]“ I:q“ —a;"r—:]“ q+1
q -1 q -1

Thus for projective geometry code associated with (m1 - 1) - spaces
of PG(ml,q) with m, > 2, we cannot obtain q(q > 2) number of (m1 - 1) spaces
orthogonal on & point for majority voting, hence we cannot achieve the same

guaranteed decodable distance q + 1.
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IV. INVESTIGATION OF THRESHOLD DECODING FOR CYCLIC CODES

Since BCH codes are most powerful random error -correcting codes,
we investigate whether all BCH codes can be L-step orthogonalized. Un-
fortunately, we find that a class of double error-correcting BCH codes cannot
be L -step orthogonalized.  On *he other hand, we found that BCH codes with
length qm-l as well as Euclidean geometry codes can be one step decoded
by parity checks which are not necessary orthogonal. We cannot decode these
codes to their minimum distances in general. These codes decoded by this
method is comparable to projective geometry codes decoded by Rudolph's
method. A comparison is made for the codes derived from projective
geometries and the codes from Euclidean geometries by u-step decoding
method. For the same error-correcting ability, the transmission rate in-

creases as code length increases but the decoder complexity also increases.

4.1 Non-Orthogonality of Some BCH Ccdes

Massey [13] in his earlier work suggested an important area of re -
search to be investigation of L-step orthogonalization procedure for block
linear codes. An interesting result is obtained in this direction. That is,
some double error-correcting BCH codes cannot be L-step orthogonalized.

The proof essentially consists of showing no set of d-1 (where d is the mirimum
distance of the code) parity checks orthogonal on any moise bit or sum of noise
bits, can be formed. We first represent a necessary condition for a code to
be L-step orthogonalized as follows.

Lemma 4.1 Let go(x) be the generator polynomial of a binary code C
and go(l) # 0. Let Coe be an extension code w. C obtained by adding an

overall parity check as its first digit to Cor i Coe is invariant under a

transitive permutation group, a nccessary condition {or Cn to be L -step




//////!

orthogonalized is that

SRt S = L .y

where n is the code length, d is the minimum distance of the code Co' d'

is the minimum distance of the dual code C of Co'

Proof: Let x;, X5, ....... xdo-l (d, is an odd integer no more than d) be

the set of vectors in the code C which are used to form a set of do-l parity

checks orthogonal on a selected sum of noise bits e, + e, +... +e, where

i i ly
e, are distinct noise bits (1 < iy < n). Let X, be a vector which is a
y
sum of x,, Xgr «von Xy 4 and the vector with all one entries. Let
0

W 0<i< do-l) be the weight or the number of 1's of the vectors X,

respectively.  Since do—l is even, x, must have ones in the positions

il’ i2. - iy. It is easy to verify that
d -1
0
> i -y=n-y (4.2)
i=0

Without loss of generality, let
Wy < Wy € == & Wy -1 (4.3)
o
From equation (4.2) and (4.3), we have

\.\;0+(d0-1)w1 -0

N y Z I — (4.4)
0

l We now want to show that

{ wotw, - (d'-1)
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and

w < n-d' (4.6)

in order to prove this lemma. Let Cé) be a code generated by (x-1) go(x)
where go(x) is the generator polynomial of Co' Let C' be the dual of Co.

C' is a ccde contains the code C as a subcode. C' contains the vector with
all one entries, hence C' contains xand x + X, as code words. The

- 2y.  Equations (4.5) can be established if

weight of X, t X, 18 W +w

1 1
we show that the minimum distance of the code C' is d'-1. C is a subcode
of C' and C contains all the code words of C' which have even weight. It is
easy to verify that the extension code Cé of C' obtained by adding an overall
parity check as its first digit to the code C' is a dual code of Coe' Coc
is a ~~de which is invariant under a transitive permutation group implies
that its dual code also invariant under the same transitive permutation group
(c.f. Theorem 11.1 of reference [14]). d' is the minimum distance of C,
then d' is an even integer and d' is also the minimum distance of C(':. Since
Ce' is invarient under a transitive group, there exists a vector v, in C;, such
that the first digit of Ve 18 nonzero and the weight of Ve is d.  The vector

v obtained by deleting the first digit of v, has weight equal to d'-1 and v is

a code word of C' with minimum weight d'-1.  Hence equation (4.5) can be
established.  The weight of X, Mmust be odd.  Since the minimum even
distance of C' is d', the largest possible weight of X, is n-d’.  Hence
equation (4. 6) is established.

From equations (4.4) and (4.3)

Wt w, - (d'-1) ‘, wot (do- 1) Wy
- L R T
o

{4.7)

»
&




PN

41

Rearrange equation (4.7), we have

1 1 "1
(- "“"do-l)“’o‘> 7 - d,-1 t =3 (4.8)

W, 2 d' 4.9)

Substituting equations (4. 6) and (4. 9) into equation (4.8), we have

(7 gD @25 - o7+ .10
[0} o]

Rearranging equation (4. 10), we have

o (3 g @1
[}

From the property that Ce' is invariant under a transitive permutation group,
we have shown the minimum distance of C' is odd (d'-1 is odd).  Similarly,
we can show d is an odd integer since Coe is invariant under a transitive
permutation group. do must equal to d when Co can be L -step orthogonalized.
The lemma is proved by «juation (4. 11).

From equation (4. 11)

jwd-1< =9 (4.12)
O - 3d'-n-1

The maximum number of parity checks orthogonai on any noise bit or
sum of noise hits is no more than J.

Let @ Le a primitive root of GF(2™). A binary NBCH code C, is
defined to be the code consists of a b, @2, ..., 91 consecutive rocts.
The extension code Coe obtained by adding an overall parity check to Co

as its first digit is invariant under a transitive group. Lemma 4.1 is

applicable te this code.
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Theorem 4.1 All double error-correcting binary NBCH codes C o
cannot be L -step orthogonalized for m > 7.
Proof: The minimum distance of these code is at least 5. Let d, =5

and using equation (4. 11), we have

m
(27 -1)+1 > ( % _ 51-1 ) d (4. 13)
or 2m+1 >

5d'

For m to be odd, d' is equal to 2™} - 2M*D/21[g]  pauation (4.13)

becomes

2m+1 > 5(,‘_,m-l ‘2(m+1)/2-1)

or 5.2(m+1)/2-1 > om-1

This condition cannot be satisfied for m greater than or equal to 7.

For m to be even, d' is equal to am-l _p(m+2)/2-1 Equation
(4.13) becomes 2™ 1 >5 M1 p(MAD /271, oL ymi2y pmel

This condition cannot be satisfied for m greater than or equal to 8.

Thus we have proved the theorem.

In this theorem, we have shown that all double error-correcting NBCH
codes C0 cannot be L -step orthogonalized for m > 7. In next, we show
that the binary double error -correcting NBCH code Co cannot be L-step
orthogonalized for m equal to 5.  The dual C of C, has vectors of the
following four possible weights 0, 12, 16, 20[8) .  We use same notation as

in the previous lemma and theorrm. A vector in the code C' but not in C

has weight equal to 11, 15, 19, 31.
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(WY + (W - y)+(Wy- y)+ (Wa-y)+ (W, - y) =n-y (4.14)

(wo- y) + (wl- y) >11 _ (4. 15)

(wl- y) + (w2 -y)>12 (4. 16)

let wlfw2 <wy §V{4 , equation (4. 14) implies

y _>_(wo+w1+3w2 -31) /4 (4.17)

Equations (4. 15) and (4. 16) imply that

y < (w0+ Wy - 11) /2 (4. 18)
y _<_(w1 +w, - 12) /2 (4.19)

With the restrictions that W, < Wy W, (i=1, 2) must equal 12, 16, or
20, W, must equal to 11, 'S, or 19, one can verify that there does not exist
a positive integer y such that equations (4. 17), (4. 18) and (4. 19) are satisfied
simultaneously.  This shows that C0 cannot be l.-step orthegonalized for

m=5.

4.2  One-Step Majority Decoding of Some Cyclic Codes

In this section, we show a method to decode all cyclic codes whose
extension codes are invariant under a doubly transitive permutation group
and also to decode the cyclic codes which have an adrlition parity check bit
than the previous ones.

Let CO be a q-ary code with length nnqmol and let qnps where p
is & prime number. The extended code Coe of Co is @ code with an overall
parity check to C0 ag its first digat.  The first position of a code vector in
C, 18 numbered 0, the i-th position for i> 1 is numbered @' where a

is & primitive element in GF(qm). Thus the qm positions of a ¢ode vector
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is numbered by qm elements in GF(qm). An affine transformation with
parameters a, b belong GF(qm), a # 0 is a permutation which carries the
symbols in position X to position aX +b.  Such a transformation can be
applied to any extended code associated with a primitive element of GF(qm).
A code will be called invariant under the affine group if every affine per-
mutation carries every code word into 1nother code word. Th;e necessary
and sufficient condition for a code to be invariant under the affine group is as
follows [6] .

Let g(x) be the generator polynomial of Co‘ Let i be a positive
integer less than qm. Let j(i) be the set of nonzero integers j such that
each coefficient of the p-ary representation of i is greater thamror equal to
the corresponding one of j. The extended code Coe is invariant under the
affine group of permutations if and only if for every ai which is & root of
the generator polynomial g(x), for every j belongs J(i), al is also a root
of g(x) and g(1) # 0. Let C be the dual of CO. Let h(x) be the generator
polynomial of C. Let h*(x) be the reciprocal polynomial of h(x). Then

. qm 1
h*(x) g(x) = x -1

(x-1) is not a factor of g(x) implies that x-1 is a factor of h(x). Let C' be
a code generated by h(x) / (x-1), then the extension code C; is invariant
under the affine group of transformations.

We are concerned with the decoding of the codes C and C'.  Kasami
et al(7] have shown the connection between binary codes which are invariant
under a doubly transitive group and their connection with balanced incomplete
block design.  Rudolph has decoded projective geometry codes by using the

property of balanced incomplete block design. The argument to prove the

following Lemma 1s similar to their argument.
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Lemma 4.2 Let n be the code length of the code C.  Let k1 be the minimum
weight of a vector in Coe where Coe is an extension code of Co which is a
dual of C. C can be decoded by one step decoding to the distance of

[0/ (k- D]+ 1.

Proof: Let v be a vector of minimum weght k; in Coe' Let E be the
equivalence class of v under the doubly transitive permutation group. Let
A be a matrix whose rows are vectors in E.  Since the permutation group
is doubly transitive, there exists a permutation which will permute i-th
column of A to the il-th column of A and the j-th column of A to the j1 -th
column of A. Since the permutation leaves the rows of A invariant except
it rearranges the rows of A, it follows that the numbers of nonzero
entries in the il-th column and i-th column are equal, The aumber of
nonzero entries in corresponding positions i and j columns are equal to the
nonzero entries in i 1 and jl columns. Let the number of nonzero eleinents
in any column be r and the number of nonzero elements in corresponding
positions of any two columns be A.  Let A, be the matrix obtained by
deleting the first column of A.  Let A, be the matrix obtained by deleting
all rows of A1 whose leftmost entries are zero. AI is & r by n matrix
with all entries in the first column nonzero and exactly A number of nonzero
entries in any other column. The row vectors of A1 are parity checks of
the code C. Hence T can be decoded to the disiance [r/KJ+ 1. U we
change all the nonzero entries of the matrix A into 1, the new matrix is an
incidence matrix of a balance incomplete block design.

Thus

n/ (kl ‘1) = I’/A.

We have proved the lemma.




In next, we show how to decode a code C' which has one more

information digit than that of C.

lemma 4.3 Let C' be a cyclic code whose generator polynomial is

h(x) / (x-1) where h(x) is the generator polynomial of the code C in iemma

4.2. C' can be decoded to the distance n/(kl- 1)] by one step decoding

s vt

methord.

= v e oo < e b A ~—Aeghesl®

i Proof- Let the dual of C' be C;) , then CL) must be subcode of Co' We want

to show that the row vector of the matrix A1 (defined in the proof of lemma

4.2) is in the code C;J if and only if the overall parity check bit added to this
]‘ row vector is equal to zero.  The total number of such vectors is r - A

because the number of nonzero elements in corresponding positivns of 1..e

l first two columns of the matrix Ais A. Consider the (r - A) x n submatrix

of Al whose rows consist of these r - A vectors, all entries in the first

o i

column 18 nonzero and at most A number of nonzero entries in any other

; column. We can decode C' to the distance (n,f (k1 - 1)] by the same

argument of lemma 4.2 provided ali row vectors of the submatrix are in C;.

3 We prove this as follows.  The generator matrix of € had the form
e e, |
g 1 a 1 . (a 1 )n
M, = I {4 20)
:‘ % i \n
i 1l a {a ) i
1 where e are positive integers.

The generator matrix of Coe must equa!l to

r 7

1 1 1 s 1

) M= | 0 1 a l .. (a ) (4.21)




because the generator matrix of C o is the matrix obtained by deleting the

first column of the matrix M2 and the element in the first column is indeed
an overall parity check. Any vector v in Coe whose first digit is equal to
zero can be obtained by linear combination of the vectors from the second
row to the last row of the matrix M2 and vice versa. By deleting the first
row and the first column of the matrix M2, we can obtain the matrix Ml'
The row vector of Al is in the code C;) if and only if the overall parity check
bit added to this row vector is equal tc zero. This proves the lemma.

The obvious reason to choose the vector v of the minimum weight
kl in Coe is that we want the integer [n/(kl- 1)] to be as large as possible
for a fixed n.

The extension codes of NBCH codes are known to be invariant under
the doubly transitive affine group. = The minimum distances of some binary
NBCH codes are known from references [15], we can apply lemmas 4.2 and
4.3 to these codes. Letn,k, d1 denote the code length, the number of
information digits and the guaranteed decodable distance by one step decoding
method.  Some binary BCH code with parameters (n, k, d1 ) are listed in
table 4. 1.

Recall that the Euclidean geometry code C with parameters m, u, q
is defined as the cyclic code whose generator polynomial contains a h as
roots for h satisfying the condition 0 < wq( hpj) <(m-u)(@-1)for 0<j<s-1
Wik Te a is & primitive element of GF(qm) and q= ps. The dual C0 of the
Euclidean geometry code C has the generator polynomial contains

]

hp as roots for h satisfying the condition 0< wq(h) < u(q-1). The

a

4




Table 4.1 Binary BCH Codes by One Step Deroding Method

n, k, d1 n, k, d1
31 10 7 31 11 €
63 9 22 63 10 21
63 15 13 63 16 12
63 23 :0 63 24
63 45 5 63 46

127 14 26 127 15 2.
255 12 86 255 13 85
255 i6 52 755 17 51
255 20 52 255 2} st
511 18 103 S11 19 102
1023 15 342 1023 16 341
1023 20 205 1023 21 204

extensgion code Coe of the code C0 satisfies the n¢ cessary and sufficient
condition for a code to be invarient under the dcubly ‘ransitive affine group.
The Coe contains all u-dimensional flats of EG(m,q). The weight of a

vector v associated with an u-dimensional flat is q“. The q-ary (m-u)Xg-1)-th
order Reed-Muller code contains q-ary code Coe as a stbcode.  The mini-
mum distance of the q-ary (m-u) (g-1)-th order Reed-Muller codg is qu[é] .
Thus the minimum welght k1 of e vector v in Coe ig qu. We can apply
lemma 4.2 to Buclidean geometry code C and the guaranteed decodable

distance is
4, =[@™-1n/@-n}+ (4.22)

The medified Euclidean geometry ceode has one more information

digit than the corresponding Euclidean geometrv code. The guaranteed

decodable uistance is [(qm— 1) / (qu- 1)] by lemma 4.3.
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4.3 Comparisons and Remarks

The guaranteed decodable distance of Euclidean geometry code C by
one-step decoding is d1 ={(qm- 1)/ (qu~ 1)] + 1 which is less than or

equal to the guaranteed decodable distance d by u-step decoding.

d=2+q+.... +q@™ (4.23)
because
m-u m_ _u-1 m_1
24q+.... gt a1y I > 8 , =q,
qQ -9 q -

When u is not equal to one, d is greater than dl' The decoder for one-step
decoding method may be simpler than the decoder for u-step decoding method.
For example, when u equal to m-1 the guaranteed decodable distance of
Euclidean geometry code C is 1 + q for cne -step decoding method but 2 + q for
(m~-1)-step orthogonalization procedure.  The decoder for the former method
is simpler than the decoder for the latter method.  The guaranteed decodable
distances for a Euclidean geometry code and a projective geometry code with
same parameters are both equal to d for u-step decoding method and both equal
to d1 for one-step decoding method. We list Euclidean geometry codes and
projective geometry codes together for comparison purposes as Table 4. 2.

In this table, q, m,u are the parameters of the Finite geometry codes. n

and k under the column PG{or EG) are the code length and the number of
information digits of projective geometry code (or Euclidean geometry code)
respectively.  The guaranteed decodable distances d by u-step decoding

method and d1 by 1 step decoding method are listed in the last two columns

of table 4. 2.




Table 4.2 Comparison of Projective Geometry Codes and Euclidean
Geometry Codes
] N PG EG ; u-step 1-step
q m u ‘ n k . n k { d d1
| 22 1. o u | s 6 6 6
3 2 . 85 68 63 47
3 1 l 85 24 63 12 22 22
4 3 341 315 | 255 230 6 5
4 2 341 195 255 126 22 18
| 4 1 1 341 45 | 255 20 86 86
E s 4 | 1365 1328 1023 987 6 5
| s 3 1365 1063 | 1023 747 22 17
5 2 f 1365 483 | 1023 287 86 69
5 1 | 1365 78 | 1023 32 342 342
1
22 1! 73 45 63 36 10 10
3 2 585 520 | 511 447 10 9
3 1 | s8s 184 511 138 74 74
4 3 1| 4681 4555 | 4095 3970 10 9
4 2 | 4681 3105 4095 2584 74 66
4 1 | 4681 590 4095 405 586 586
! 22 1 a3 e | oass 174 18 18
2 | 4369 4112 | 4095 3839 18 17
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Let the code length, the number of information digits and the number of
check digits of the Euclidean geometry code with parameters q, m{(m=m’), u
be L ke and I, respectively. Let those of the projective geometry code with
same parameters be n p’ kp and rp respectively. Let those of the projective

geometry code with same q and u but m=m'-1 be ng), kb and ri) respectively.

From Table 4.2, we observed that for m'-1> u

k =k -k -1 4.24
e =Ky T Ky (4.24)
Since ne=qm -1, np= 1+q+... +qm andn£)= l1+g+... +qm "1 therefore
n =n_-n -1 (4.25)
e p p
From equations (4.24) and (4. 25), the parity checks of these codes satisfy the
relation
= -’ 4.26
T, rp rp ( )

We observed that the number of parity check r, when m'-1 equal to u is
L ptm’-1.s -
rg=(" ) (4.27)

These observations can be explained as follows. The integer o is equal to
the numbex of distinct elements in the set A which cnsists of integers a such

that +1

0 <ac< qm -1

w@p) = s @), 0<j<sl 0<y, Smiu) (428
(c.f. theorem 3.1)

The integer r;) is cqual to the number of distinct elements in the sct B which
consists of integers b such that

0<b<q™ -1

X bp)) = v @) 0<) S sl 08y S mt L) (4.29)

The integer r, 1s equal to the number of distinct elements 1n the set C

which consists of integers ¢ such that




0< m’-1

c<gq
- (4.30)
0<w(cp)<m'-w)(g-1), 0<j<s-1
(c.f. theorem 2.1)
Clearly the set B is a subset of A. We first show that
r,{r_-r! (4.31)

€ P P
by showing for a distiiict ¢ in the set C, there corresponds ¢ distinct h in the

set A but not the set B, Let
¢ = Z hg, 0<h <gq-l (4.32)

be an integer in C. Let
_ m
h=c+h_.q (4.33)

where hm' is as follov s.
In case (1), wq(c) is not a multiple of (g-1). Let hm' be a positive
integer less than q-1 and hm' + wq (c) is a multiple of (q-1). In case (2),

wq(c) is a multiple of (¢-1), then

w, (¢ pj)=vj (@), 0<j < sl 0< v <(m'-w) (4.34)

If Vj is less than (m'-~u) for all j, let hm' equal to q-1.  If there exist one
j such that Vj is equal to (m'-u), let hm, equal to zero.

It is easy to verify that the integer h defined in equation (4.33) is in the
set A but not the set B. Two different elements in the set C will correspond

to two different elements in the set A but not the set B.  Hence equation(4. 31)

is established. For any element h' is the set A but not the set B, h' can be




53
written as
m'
h' =Z hq 0<h<q-l (4.35)
i=0
It is easy to verifv that
m'-1
¢ = Z b g (4. 36)
i=0
is in the set C. Hence
> -r 4.37
Te 2 Xp-Tp (4.37)
Thus equation (4. 26) is established.
When m'-1 equals to u,
- p+m'-1.s
rp 1+ ( m' ) (4. 38)

{c.f. equation (3.47) ) and

Henze ¢ jnation 4.« is Cowmtioinmd.

We list the transmissiovn rate (k/n} of some codes listed in Table 4. 2
with same guaranteed decodable distance d in Table 4. 3.

In table 4.3, u is the number of steps required for decoding. The
quantity in parentneses is k/n. For same d, the transmission rate in-
creases. The decoder complexity increases as the code length, the number

of information digits, the number of steps required for decoding increase.
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-

V. APPLICATION OF CODING THEORY TO INFORMATION RETRIEVAL

5.1 Introduction

An entry in theindex file for the document collection typically includes

an identification number for the document together with a list of descriptors

or attributes characterizing that particular document. The descriptors are

commonly chosen from a dictionary and an upper bound is placed on the
number of descriptors which may be chosen to characterize any single
document. A "query" to such a collection is again a list of descriptors
from the dictionary. A typical dictionary might contain a number of N

descriptors between 103 and 104 and the maximum number of descriptors

would normally fall between 5 and 10 [9].

The information retrieval problem considered here may be defined
as follows: Given a query, we wish to devise a process by obtaining a list
of documents such that each of these has all the descriptors possessed by the
query. In other to automate the retrieval process, it is necessary to encode
both document and query data in some form suitable for automatic process.
Two important methods for doing this have been pr.. 'sd.  Onc iv asing
zero-false -drop codes proposed by Kautz and Singleton [9].  Another one
is derived from algebraic coding theory by Chien and Frazer [3_] Encoding
by the former methad usually has longer digit representation than the latter
method.  The time required to retrieval is comparatively less by using
zero-false -drop code. = We now give a brief summary of these two codes.
A zero-false-drop code of order t (ZFDt ) is a set of n-digit binary code
words satisfying the property that every sum of up to t different code words

logically include no other code word where the sum of the n-digit binary words

is their digit by digit Boolean sum. Let each of the N descriptors in the
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dictionary be assigned a unique n-digit binary code word of ZFDt code.

Each document is represented by an n-digit word which is obtained by forming
the digit by digit Boolean sum of the code words of all of its constituent des-
criptors. The query is represented in identical fashion. It follows directly
from the property of the ZFDt code that as long as no more than t des-
criptors are associated with any one docurnent, the query is logically included
in a particular document word if and only if all of the query descriptors are
included among the descriptors associated with the document.  Thus ZFDt
code can be used for information retrieval file and guarantees no false drop.

The method of encoding documents and queries from the algebraic
structure of linear error-correcting code are as follows:

Let V1 be a linear code with t-error -correcting ability.  Let H be
the parity check matrix of Vl' The row space of H is in the null space Vs
of Vl' The syndrome of a vector v is defined to be vHT where HT is the
transpose of the matrix H. If the code length of V1 is N1 which is greater
than N, the total number of descriptors in the dictionary, we can reprcsent
each descriptor as a column of H. then each descriptor is represented by
binary n-tuples where n is the number of the parity check in the code. A
document (or a query) i« represented hy mod-trwo linear combination of the
n-tuples each of which corresponds tc a constituring descripior of the docu-
ment. A query is represented in a similar manner. We limit the maximum
number of descriptors to characterize each document tot.  The documents
can be represented un-ambigucusly because no two distinct linear combinations
of t or fewer columns of H are equal.  The retrieval method is based on the
following argument. In an error-correcting code, we usually choose the

vector with minimum weight in the coset as a coset leader. A coset leader
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Cd is said to cover a cost leader Cq if Cd centains 1 whenever Cq contains

1 in any digit positivn. (Jd covers Cq if and only if w(Cd + Cq )+ w(Cq )=

w (Cd) where w(x) = weight of the coset leader x. = We <an consider each
digit position of a coset leader corresponding to a descriptor in the dictionary.

A coset leader C, corresponds to a document. if Cd has 1's in the digit

d
positions corresponding to constituting descriptors of the document, and has
O's in all other digit positions. A coset leader Cq corresponding to a query
in similar way. A document Cd covers a query if and only if w(Cd + Cq) +
w(Cq) = w(Cd). In information retrieval, we do not have the coset leader
Cd and Cq explicitly available to us for testing. Instead we have syndromes
S4 and sq of Cd and Cq respectively. From previous discussion, it is

clea, that the main computational problem in our retrieval process is that of

determining whether f(s , )= f(sd) - f(sq ) where f(s‘{) is Jdcfiied to be

atq

equal to w(x). In coding terminology, computing f(s ) is equivalent to

dtq
finding the weight of the coset leader from the syndrome of the coset.
Details of a retrieval method derived from algebraic BCH code decoding can

be found in reference [3].

5.2 Zero-False-Drop Codes Derived From Finite Geometries

Two classes of zero-false-drop codes can be constructed from finite
geometries.  One is derived .rom projective geometries and the other one
is derived from Euclidean geometries.

Kautz and Singleton [9] have derived a bound for the order of zero-talse -
drop code of constant weight codes. Let w be the weight of any code wora.
Let 4 be the dot product of any pair of code words.  Let max be the
maximum number of such u's. fw>tu + 1, then any code word

- max

cannot possibly be contained in the sum of any t other code words. since it
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overlaps each of these other code words in nc more than u max positions.

The constant weight code has order t as a4 zero false drop code such that

w -1
tzl:“max] -1

where the bracket indicates "the integer part of".

The projective geometry of dimension m over GF(q), i.e. PG(m,q)

has number of points equal to

m+1_

q 1 .2)

TS W

Any u-space (1< u<m-1)of PG(m,q) has number of points equal to

we 11 (5.3)

The total number of u-spaces of PG(m,q) [:11] is
u
I I (qm+1 _ql)
- i=0
u
[T @*-d))

=0

N

=N (u, m,q) (5.4)

Let S be a matrix whose rows correspond to the u-space
(1<uxg m-1) of PG(m,q). The matrix S has N rows, n columns and w
ones per row. We can regard each row of S as a code word of a zero-false-
drop code. This is a constant weight -ode.  The intersection of two u-
spaces is & space of dimension u-1 or less. Hence

u-1
B oax=1tat...+q (5.95)




From equation (5. 4),

u
tZL:~1]=[1+q+...+qu—}1J=q (5.6)
max 1+q+...+q

We now show that t is equal to q. Let vy be a code word. v, corre-

sponds to an u-space. Total number of (u-1)-spaces contajned in this u-

space orthogonal on a particular (u-2)-space is

A+q+...+q°)-(U+q+.. +q" P
Q+q+...+q" H -(Q+q+... +q%

=1+q (5.7)

Let vél) be a code word not equal to vy and v (1) contains i-th

(1 < i <1+q) of these (u -1)-spaces which are contained in vy The code

word Vu is logically included in 1 + q different code words véi) (1<i<1+q).
Hence

t=gq (5.8)

We obtain ZFDq codes for any power of prime q. There exists m-1

different codes for a fixed m and q.  The code lengths n for these codes are

equal. Among these codes, the best one is the code with maximum number

of code words N. From equation (5.4), the maximum N occurs when

o-[3] 69

Similarly, we can take S to be a matrix whose rows correspond to

u-dimensional flats of the Euclidean geometry of dimension m over GF(q),

or EG(m,q). The number of rows N, the number of columns n, the number

of ones per row will take the following values [11] .

n=qm (5. 10)
N=N(u,m,q) - Nu, m-1,q) (5.11)
we= q" (5.12)
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Two u-dimensional flats EG(m, q) intersect an u-dimensional flat

(0 < u' < u) or do not intersect at all.  Hence

_ u-1
Hnax 4 (5.13)
and
w -1 u -1
C> [___J =[q ] —q-1 (5. 14)
~ | H u-1
max q
a d
Let o 1, «@ dz, 1 Y pe linearly independent over GF(qm ).

Let u be a vector corresponding to an u-dimensional flat consists of qu
points
a “+....ta « (5. 15)
where ai( 1 <i < u) runs independently over GF(q).
d :
Let « © bea point not in this EG(m,q). Let vél) (1 <i<q)be

vectors corresponding tc u-dimensional flats each of which consists of points

a a +a,a +...+a a +q.q (5.16)

where a, (0 < i <€ u-1) runs independently over GF(q)and Qs Qpre-- ,qq
are distinct elements in GF(q).
The code word v, 18 logically included in the sum of these code words.

Hence

C=q -1 (5.17)

There exists m-1 different ZFDq_ codes for a fixed mandq.  The

1
code length n and the order of superimposcd code t (t =q-1) is fixed.. Among
these codes, the best one is the cosde such that the numbers of code words N is

the largest. A We list some zero-false -drop codes derived from

finite geometries in Table 5. 1.




Table 5.1

Zero-False -Drop Codes Derived From Finite Geometries

Projective Geometry Zero-False-Drop Codes

61

In | 3 155 | 1395 | 1811| 97155 | 130 | 1210 j 33880
RS 31 63 127| 255 40 121 | 364
. e e o
t 5 2 2 2 2 2 3 3 J 3
{
N 357 5797 | 806 2850 © 4745
n 85 341 | 156 400 . 585
1
t 4 4 5 7| 8
Euclidean Geometry Zero-False -Drop Codes
!
N | 117 1080 | 32670 | 336 5440 775 2793 4672
n 27 81 243 64 256 125 343 512
t 2 2 2 3 3 4 6 7
A
5.3 A Method for Encoding and Retricval of Documents

A method of encoding and retrieval of documents derived from

algebraic coding theory is introduced in the first section. A new method

also derived from algebraic coding theory will be presented in this section.

A comparison will be made with the previous method.  Let n be the code

length of a t-error-correcung BCH code.  Let a he the prinmative n-th

root of unuty. If the total number of the descriptors tn the dictionary s

-1
less than n, we can represent the j-th descriptors by a’™' If a document




has Yy number of descriptors X(ld), Xéd), cee Xvsd) , We propose to
d

represent the document the sequence of digits ¢ =[cl, Ogrens Gwd] where

cri are elemently symmetrical functions of X;d), ng), v ){‘d) . Ifa

query has wq number of descriptors X{q), X;q), vees X\(vq\, the deter -

q
mination of whether a document covers a query becomes to determine

w.~1 w
whether = -0 X Foevvnnnns +0  (-x) +(-1) d contains ng)
wd Vv’d A'l 1

as roots. The hardware required to realize this decision is considerably
simpler than BCH coce decoder which is required for retrieval if the docu-
ment is represented by the syndrome. The hardward required to encode

0 is no more complicated than the hardware required to encode s An

q
information system described in reference (3] utilizes the variabie length
coding to minimize system requirements in both storage und computation.
The new representaticn of document is also a variabie length scheme, and
the storage required is minimum. The computation seems to be simpler

than to determine the weight of coset leader from the syndrome of a document

plus & query.

5.4 On the Use of Finite Geometry Codes by Chien's Formulation

By using Chien's formulation [3], the main task to determine whether
a document covers a query is equivalent to find the weight of coset leader
from the syndrome. For the codes constructed from finite geometries,
Reed Decoding Algorithm can be applied. The determination of weight of
coset leader from syndrome if codes constructed from finite geometries
instead of BCH codes are used. In general, the efficiency of BCH code is
higher than that of finite geometry code but the difference 1s slight in many

cases including difference -set cyclic codes [17] . We can apply these codes




constructed from finite geometries for information retrieval. We first

introduce Reed Decoding Algorithm and show that, in some cases, the
determination of the weight of coset leader from syndrome is simpler than
using Reed Decoding Algorithm.

Let L be a nxb matrix of 1's and 0's whose b columns are elements of

the null space V2 of an (n, k) binary code V Any vector of the null space is

X
essentially a parity check rule satisfied by code vectors. For any received
vector v, vL is a vector of b 1's and 0's which contains 1's in the positions
corresponding parity check rules thatv fails to satisfy. Now consider the

result of mhultiplying (vL) by LT as real numbers. The result will be a

vector of n components that are integers.

e(v) = (vL) LT 6. 18)

There will be a contribution of 1 in the j-th component of e for each
column of L which fails as a parity check and contain a 1 in its j-th position.
Thus the j-th component of e is the number of failures of parity checks that
involve the j-th symbol in the code vectors. Let e (v) be a vector whose j-th
component is 1 if the j-th component e(v) exceed certain threshold and 0
otherwise, e(v) is considered to be the error vector. The number of 1's
in e(v) is the number of errors. For a projective geometry code associated
with u-spaces of PG(m,q), let L be the matrix whose columns corresponding
to u-spaces. For an Euclidean geometry code associated with u-dimensional
flats of EG(m,q), let L be the matrix whose columns corresponding to the
u-dimensional flats with first digit deleted. If we let t equal to
[(qm-l) /2 (qu-l).] and set threshold at r/2 vhere r is the number of 1's
in the row of L, e(v) is the error vector provided the number of errors oc-

curred is no more than t. In information retrieval system, let the syndrome




of a document plus a query be s , we actually compute e(s )=5s MLT
y d+q

d+q

instead of e(v) = vL LT where M is a matrix such that vL =s M.

d+q

In some cases, we need to compute Sq+ M only in order to distinguish

q

the weight of coset leader from the syndrome, the computation of s d J_qM is

much simpler than the computation of s d+q M LT.

We demonstrate this as follows: Let L be the matrix whose columns
are u-spaces of PG(m, 28). Let v be the coset leader corresponding to

s then vL=s M. I for distinct weight of v, the number of 1's

d+q’ d+q

in s d +qM is distinct, the computation of s M is sufficient to determine

d+q

the weight of coset leader from the syndrome. We now show that the weight
of 84 +q M is distinct for sd_*_q corresponding to the coset of weight 0, 1, 2,
or 3 for t greater than or equal to three.  The computation s d +qM is
sufficient to determine the weight of coset leader from the syndrome if the
code is a triple error-correcting code.

Let w(x) denote the weight of a vector x. We have

w(s M) =0 when w(v)=0 (5.19)

d+q

The number of 1's in any row of L is r where

m

i (2'%-1)
i=(m-u+1) (5. 20)

r=
LINCARE
j=1

w(s M)=r when w(v) =1 (5.21)

d+q

The number of pairs both with 1's in any two rows of L is A where

Y (2is-1)
A = J=(m-u+l)

11-@s

j=1

(5.22)
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When weight of v is equal to two, the two nonzero digit positions

4 %

correspond to points a ~, a ~ of PG(m,2s ).  The number of u-spaces
contains any one point is r and contains any two points is A. A parity

check corresponding to an u-space fails if this u-space contains one and only

d d d
one of the points « 1, a 2. The number of u-spaces containing a

d
and not o is r - A, Thus

w(sd+qM) =2(r-A) when w(v)==_ (5.23)

When weight of v is equal to three, the three nonzero digit positions
d d d
correspond to three points a ~, «a 2 and «a 3 of PG(m,ZS). Two
cases possible. In case (1), these three points are linearly dependent. «

an u-space contains two of these three points, then it must contain the third

point.  Total number of u-spaces containing all three points is 7*._ Thus

w(sd+qM) =3(r-A)+A=3r -2A (5.24)

In case (2), the three points are linearly independent. Let }‘1 be the

number of u-spaces containing these three points.

m-2 .
2'%-1)
_ i=m-u+1

TT @y

j=1

The number of u-spaces containing « , but not 2 and @4 is r - 2A + }\1'
The number of u-spaces containing one of the three points or all of the three

points is 3(r-2A + ?\1) +A Thus

1

w(sd+qM)=3(r -27\+7\1)+ 7\1=3r -6?\+4}\1 (5.26)
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t =[r/2>£| (5.27)
When t is greater than or equal to three

r > 6h (5.28)

From equation (5. 28),

3r-67\+47\1>2r-2A>r>0 (5.29)

also

3r - 2A> 2r - 2\ (5.30)

Thus the weight of s d+ qM is distinct for s corresponding to the coset

d+g
of weight 0,1,2, or 3.

5.5 On the Use of Symmetry of Codes for Retrieval

One form of symmetry of a systematic code is a permutation of bit
positions in each code word (the same permutation is applied to all code words)
which preserves the code as a whole.  The idea of using symmetry of the
code for information retrieval is closely related to the concept of permutation
decoding [10] .  The permutations which leave the code invariant have a
desired property for information retrieval purposes. If G is a group of
permutations that leaves the code invariant, uien G partitions cosets into
equivalence classes. The coset leaders of the coset in the same equivalence
class have the same weight. There exists a group G1 isomorphic to
G [19] . G1 partitions the set of syndromes into orbits. If two syndromes
in the same orbit of Gl’ then these corresponding cosets are in the same
equivalence class of G.  That two syndromes in the same orbit implies that
their corresponding coset leaders must have the same weight. If a t-error-

correcting code can be decoded by permutation decoding and a received
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sequence has errors less or equal to t, then all the errors in this received
sequence can be moved to parity check portion by a permutation in G. In an
equivalence class under G of cosets whose coset leaders are of weight t
which is less or equal to t, then there must be a coset leader with all its 1's
in the parity check portion. The syndromes of the coset leader having
information digit portion all zero is identical to parity check portion of this
coset leader.  For any syndrome corresponding coset of weight 13 which is
less or equal to t, there exists a syndrome in the same orbit under G1 such

that the number of 1's in this syndrome is t It becomes clear at this

r
point that a t-error-correcting code which can be decoded by permutation
decoding can be used for information retrieval purpose.' Recall that a docu-
ment is represented as a syndrome in Chien's formulation and the main
computation is to determine the weight of coset leader from the syndrome.
The determination of whether a document covers a uery is as follows.

We obtain a syndrome s by adding the syndrome of document s and the

d

syndrome of query s q " We determine the weight of coset leader of s

d+q

d+q

by generating the syndromes in the same orbit of s under Gl' If one

d+q
of these syndromes has number of 1's equal to t which is less or equal to t,

the weight of coset leader must be equal to t Otherwise the weight of

1
coset leader is larger thant.  The effective use of this principle lies on a
method to generate the syndromes in the same orbit without duplication

which will be presented at the end of this secion.  The permutation decoding
is mainly for low rate codes. If a code has minimum distance d equal to

2t + 1, then this code is capable of correcting t errors. If we cannot move

all errors in an error pattern with weight less than or equal to t to the parity

check portion by the permutations which leave the code invariant, the




- -

[ S Y

)

b

68

permutation decoding scheme does not work for this code. If we represent
the documents and queries as syndromes of this code, there exists a syndrome

S corresponding a coset of weight less than or equal te t, but all syndromes

d+3
in the orbit of s under Gl has number of 1's larger thant. In this

d+q
case, we need some modification in information retrieval process in order
to make use of this code. = Two approaches are possible.  The first approach
is as follows.  We pick any syndrome in the orbit as a representative if
syndromes in this orbit corresponding coset leaders of weight less than or
equal to t and all of the syndromes have number of 1's greater than t. We
store all representatives of the orbits having the preceding property and the

corresponding weights of the coset leaders. Given a syndrome s , we

d+q
proceed to generate the syndromes in the same orbit.  If one of the syndromes
has number of 1's less than or equal to t, we determine the weight of coset
leader immediately.  Otherwise we can do table look up to find its weight.

In this approach, we need storage to store the table which consists of the
representatives of the orbits and their corresponding weights. The approach

of this method is practical provided the table is not very large. It is possible
to save storage by the following sccond approach. We define a vector Ve
covers a coset leader e if the information portion of v, agrees with any coset
leader e' in the equivalence class of e under G. We obtain a set of covering
vectors that cover every coset leader.  We call their corresponding syndromes
the covering syndromes. F 01: any syndrome of a document plus a query, we
can find a syndrome in the same orbit and the sum of this syndrome and a
covering syndrome will have the number of 1's less than or equal to t in the
resulting syndrome.  In this case, we are able to determine whether a
particular document covers a given query.  The retrieval process is based

on this principle. In the second approach, one covering syndrome may
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cover several equivalence classes. The storage requirement in the second
approach is less than that in the first approach. In the first approach, we
can arrange syndromes having the same weight together in the table. We
need only to check whether the syndrome in the equivalence class of s d

+q
match the syndromes in the section of the table where syndromes have weight

|
g
|
|
|

equal to the weight of document minus the weight of query. In the second

» -

approach, we can arrange the covering syndromes with same weight together
in the table, we need only to check whether the syndromes in the equivalence

class of s are covered by the syndromes which have weight no more than

d+q
the weight of document minus the weight of query.

A method to generate syndromes in the same orbit without duplication
is as follows.  The only known group of permutations which leaves any

binary cyclic code invariant is the group Gn generated by cyclic permutation

T and the permutation U which maps w to 2w mod n where W is coordinate

number labeledas 0,1,2,..., n-1 [10] . If nis odded, there exists a least

integer t such that 2" =1 mod n and Ut =]. It is easy to check that TU = UT2

. 2 .
(i.e. vTU = vUT" for any vector v), hence we may represent every permutation

in Gn in the form UiTj with 0 € i <t-1, 0 < j < n-1. Now every power
of U leaves 0 fixed; thus UiTj = Uth ifand only if i=hmodtand j=k
mod n.  Thus the group Gn censists of nt permutations Ui’l'j for alli, j
such that 0 < i <t-1 and0 < j <n-1.

Gn partitions cosets into ¢quivalence classes.  The weight preserving

group which is isomorphis to Gn partitions the set of syndromes into orbits.
We want to generate the syndrome i the orbit without duplication.  Otherwise
it is wasting time.,  This e problem to get all coset leaders in an
equivalence class without .. sor - act v e a coset Jeader. If the
equivalence class of v conmtats of nt distonct elements. then all the elements
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in the following t x n matrix are the distinct coset leaders in the equivalence

class.
leTJ] (5.31)
tXn
where 0 <1i<t-1, 0 <j < n-L
. If the equivalence class of v does not have nt distinct elements, the

distinct elements can be obtained as follows.
Let e be the smallest positive integer such that vI® =vI andt' be

the smallest positive integer such that vUt =vT) for some jo The

equivalence class of v containing the elements
vt for 0<i<t-l, 0<j<e-l (532

The proof is as follows.  The elements in any row are just cyclic
shift of each other. If t' is the smallest integer such that wb = v for
some j. The elements in t'+ 1-th row of matrix (5.31) are identicai to the
elements in the first row of matrix (5.31).  The elements in the t' + 2 row
is ivdentical to the elements in the second row etc. If the row consists of

1 1

vU 1 is identical to the row consists of vU 2 where O§i1< 12
i, -1

the row consists of vU is identical to the first row. This is a contra-

<t'-1, then

diction because 1‘2 - il< t'.  Thus the first t' rows of matrix (5.31) are
the only distinct rows.  We define the period of a vector v to be the smallest
integer e such that vI€ = vl.  We need to show that the period of v is equal
to the period of vU'.

Let v(x) be a polynomial whose coefficients corresponding to v , and

the period of v bee.  Let v(xz) be a polynomial whose coefficients corre -

sponding to vU and the period of vU be e'.




xev(x) = v(X) mod x" -1 (5.33)

implies that

X V(Xz) = x“(v(x) )2 = (xXV(x) ) v(x) = v(x) V(x) = v(xz) mod x"7! (5. 34)
Therefore
e' <e (5.35)
x‘?' ) =v(®)  mode x"-1 (5. 36)

implies that

\ .ot : t \ t
Evx) = xS W) = w0) = £ ) (vix) 22

t t
= xe' v(x2) (v(x) )2 2. v(xz) (v (x) )2 2 v(x) mod x"- 1 (5.37)

Therefore

e' >e (5. 38)

From equations (5. 35) and (5. 38)
e'=e (5.39)

We have shown that e'=e for i=1.  Similar argument
will enable us to prove that vUi and (vUi)U have same period, hence v and vUi
have same period for any i.

Thus we have shown that the equivalence class of v containing the

elements defined in equation (5. 32).

5.6 Investigation of Using Concatenated Codes

In Chien's formulaticn, we represent the descriptors by the columns of
the parity check matrix of a t-error-correcting code where t is the maximum
number of descriptors allowed by any document. It is easy to verify that a

code V'1 obtained by joining severial t-error-correcting codes is also capable
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of correcting t-errors, therefore we can represent the descriptors by the
parity check matrix of V‘l. The use of multiple copies of a single code will
simplify the computational process but on the other hand, will require larger
addresses. The situation is roughly as follows.

If one BCH code with length equal to 2™- 1 is used, the number of
parity check digit is mt.  Now if we use 2m' number of the same code with
code length zm-m' -1.  The number of allowable descriptors in the dictionary
is zm'(zm'm' -1) which is a little less than 2™- 1 when m is much great. .
that m'. Let £ equalto 2m'. We will show that the fractional amount

of work required by using £ codes compared with that required by using one

code for each different weight of documents is E-ZDZCi where D is the
k

weight of the document and the Cf(s are the coefficients of the terms in the
expansion of (x1 + X, +... + xZ)D. To illustrate, for D = 10, the fractional
amount of work by using four copies is 0.01.  The detail derivation of the
formula and a curve for showing the percentage amount of work required by
using £ BCH codes as compared with that of one BCH code for different
weights of a document is as follows.

Let D be the weight of a document and let Q be the weight of a query.
If D is greater than Q, we can determine whether the document covers the
query by comparing the syndromes corresponding to the cosets of weight D-Q.
Let Ai be the number of cosets of weight i, then Ai = ( ?) where n is the code
length. The number of comparison is Ai' We can use a concatenated code
obtained by joining two codes together.  Given a query of weight Q with
weight Q1 in the first section and weight Q-Q1 in the second section. We do
not need to test all the documents of weight D which is greater than Q.  We

need only to tes' the documents of weight D and with weight D1 in the first
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section where Q1 < Dl < DQ+ Ql’ For a document of weight D with

weight D1 on the first section, we need to make roughly ( 31-'81 ) AD_Q/zD'Q

comparisons to determine whether a document covers a query. We assume
the probability of occurrence of each descriptor to be equal. The percentage
of documents of weight D1 on the first section and D-D1 on the second section
in all documents of weight D is (gl ) /2D. Let 6 2 0 1 be the total amount

of work for testing all documents of weight D by using two, one codes

respectively, Then

ST oy S
y adoae Bl & CYl%)

=l

(S. 40)
7 ,DQ ,D IEe)

The probability of a query with weight Q1 in the first section and Q-Q1 in the
second section is approximately ( 8 )/ 2Q. On the average the percentage
1

amount of work for a query of weight Q is

D

(2 ()] o

D2
e 2107 = ch (5. 41)
2 2 -

P S
2
Q,=0

where Cl;s are the coefficients of the terms in the expansion of (x1 + xz)D.

Generally, if we use a concatenated code obtained by joining ¢ BCH

codes together. The fractional amount of work required by using a
2
k

s are the coefficients of the terms in the cxpansion

concatenated code and a BCH code is l‘ZDZ C,. where D is the weight

of the document and the C‘k

of (x1 + X t.o.o X, )D. The derivauon of this formular is similar to the
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derivation of the formula for £ =2 case. The percentage amount of work
using £ BCH codes comparing with one BCH code under different weight of
documents i3 plotted in Fig. 1. The curves are independent of the weight

of a query.
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Fig. 1. The percentage amount of work required by using £ BCH

codes as compared with that of one BCH code for different
weights of a document.
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VI. CONCLUSIONS AND FURTHER PROBLEMS

6.1 Conclusions

Two related classes of codes derived from Euclidean geometries have
been found. These codes can be u-step decoded by threshold decoding.
These codes are comparable to projective geometry cedes which are moder -
ately efficient random-error -correcting codes for practical values of code
length and rate and can be decoded with a relatively modest amount of equip-
ment. Hence it appears that these codes may be suicable for use in error
control systems requiring random-error correction. The polynomial version
of Rudolph's projective geometry codes has been found for practial values of
code length and rate. It is important to find the polynomial version of a cyclic
code because we need to know the generator polynomial for encoding purposes
and furthermore the number of information digits can be determined easily
from the generator polynomial.  One-step threshold decoding using not
necessarily orthogonal parity checks is found to be applicable to BCH codes
and codes derived from Euclidean geometries. We found that it is possible
to improve upon Rudolph's decoding methed in some cases. M projective
geometry codes, Euclidean geometry codes, and BCH codes are decoded by
one -step threshold decoding methods, their 2fficiency and error -correcting
ability are comparable.  Two new classes of zero-false-drop codes have
been found which compare favorably with the previously known classes.
Several results related to the application of algebraic coding thecry are cb-

tained. They may be useful in a practical information retrieval system.

6.2 Further Research Areas

Because of the easy implementation of threshold decoder and abundant

results on the construction of threshold-decodable codes, it appears that
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threshold decoding will continue to be a promising area of research directed

toward improving the reliabiuty of data transmission in communication systems.
Some promising areas for future research are:

1. To find more powerful threshold decoding algorithms and evaluete

error -correcting ability of these algorithms for cyclic codes.

We have shown that not all cyclic codes can be L-step orthogonalized.
The L-step orthogonalization procedure can be generalized by allowing the
use of non-orthogonal parity checks ot each step. One -step decoding methods
are the only ones that have been investigated by means of their relation to
balanced incomplete block designs.  As is well known, many error patterns
with weights greater that [(d -1)/2] , where d is the minimum distance of the
code, can be corrected by threshold decoding. It would be desirable to find
more powerful threshold decoding algorithms and to evaluate more precisely
error -correcting ability of threshold decoding algorithms.

2. To construct new codes suitable for threshold decoding or tc improve
the threshold decoders for known codes.

The finite geometry codes are not as numerous as BCH codes. It is
easy to define a class of codes which contains the Euclidean geometry codes
and projective geometry codes as subclasses, as follows.

lLet o be a primitive element of GF(qm). Let a be an integer which
divides qm -1. Let C be a code whose generator polynomial contains o h as
roots for h which are less than qm -1, are divisible by a, and satisfy the
condition 0 f_wq (hpj) < Iwhere 0 € j <s-landlis a fixed integer. When
Iis a muitiple of (3-1) and a is equal to one, we have a Euclidean geometry
code. When Iis a multiple of q-1 and a is equal to q-1, we have a projective
geometry code. For other values of I and a we obtain codes that have not been

investigated previously. The number of information digits and the BCH bound
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for these codes can be determined easily. To establish a decoding algorithm
for these codes, possible by exploiting their geometrical properties, would be
very useful.

Improvemen: of the decoders for finite geometry codes are possible.
The choice of u'-dimensional flat parity checks in the implementation of u-step
decoders is not unique. It is quite possible that one choice would lead to
simpler circuitry than the others. The number of majority gates may be
reduced by detailed evaluation of the dependency of these u'-dimensional flat
parity checks. As to one-step decoders for projective geometry codes, we
have demonstrated in section 3. 4 the possibility of using some but not all
u-dimensional flats for majority voting and still achieving the same guaranteed
decodable distance as Rudolph's method does. The number of parity checks
in the one-step decoding algorithm for Euclidean geometry codes and BCH codes
proposed in section 4.2 may be more than enough. The guaranteed decodable
distance 1+ [(qm-l) / (qu-l)_] for one-step decoding of finite geometry codes
bv this decoder is only a bound which may underestimates the error-correcting
ability of the decoder. Further investigation of these questions may lead to

fruitful results.
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